Course title: Urban systems Modelling							
Course code: MEU 183	No. of credits: 2	LTP distribution:	Learn	ing			
		21-0-14	hours	: 35			
Pre-requisite course code and title (if any):							
Basic knowledge of statistics and GIS							
Department: Department of Energy and Environment							
Course coordinator: Deepty Jain		Course instructor: Deepty Jain					
Contact details: deepty.jain@teriuniversity.ac.in							
Course type: Compulsory Course offered in: Seme			nester	3			
Course description:							
Urban areas or cities are dynamic and complex systems that also exhibit a self-organizing							
benaviour. The complex urban system has various inter-related subsystems like population,							
nousing, transport, water and climate. It is unnoun to envisage the changing development							
climate change and disasters). Therefore, the impact of these development patterns on economy							
society and environment is uncertain							
In semester 1 and semester 2, UDM curriculum expands the knowledge of observing, measuring,							
analysing, describing and visualizing important processes taking place in urban regions, using							
statistical and spatial-analytical methods and techniques. The students have also gained an							
exposure on various aspects of urban development and management like theories of							
urbanization, services, ecology, city competitiveness, urban finance and policies.							
This course will develop an understanding of methods, models and simulations applied for							
problem solving, better decision m	aking and simulating urba	in changes. The student	s throu	ugh	the		
course will have an edge on unders	standing urban complexiti	es, interactions betwee	n syste	ems	and		
therefore envisage development ir	n lieu of certain policy cha	nges.					
Course Objectives:							
1. To equip students with the concept of system theories and dynamic system approaches							
2. To enable students to study interactions between urban sub-systems							
3. To provide hands on exper	Tience on urban system mo	odels and simulations					
Course contents							
Торіс			L	Т	Р		
Module 1: Urban systems, comp	lexities and inter-linkages	between subsystems	1		2		
			0		2		
a) Complexity, system theory and system dynamic approach for urban systems							
b) System quantification to study interactions for urban areas like infrastructure							
supply, accessibility, affordability	(AFCGIS)						
c) Discrete choice models and c	uantification of interaction	ons between systems					
Tike relocation models, choice mo	ueis (SPSS/Stata/AltGIS)				1		
Module 2: Urban models and sim	nulations		9		2		
a) Concept of modelling, simulation and flavours of models – static and dynamic							
models, aggregated vs disaggrega	ated models, simulations	, , , , , , , , , , , , , , , , , , ,					
b) Conventional and New generation models like cellular automata. agent based							
models and flow dynamics		5					
c) Land use and Urban Develop	ment model and simulation	ons (hands on exercise					
on METRONAMICA/SLEUTH/ CLU	E-S)						
Module 3: Managing uncertainty and data limitations			2				
a) Uncertainty in urban systems	s and its impact on model	s, scenarios and					
solution findings							

b) Methods to manage uncertainty and data limitations			
Eveloption Orthopia			
Evaluation Criteria:			
Assignments* 30%			
Project work ** 30%	ļ		
Final Examination 40%			
*Assignments. This shall cover review of urban models, quantification of factors and developments	ont		
of residential choice models	5111		
** Project Work – This shall include development of an urban simulation scenarios and estimat	ting		
impacts on simulation results	.ing		
On successfully completing this course the students will be able to:			
1 Quantify interactions between drivers and sub systems of urban system			
2 Anticipate impact of alternate development strategies on futures			
2. Anticipate impact of alternate development strategies of rulines 3. Dovolon models and simulations for urban systems			
Develop models and simulations for drught systems			
The course will be delivered through class room togehing, research based discussions, each study			
of applied methodologies and bands on experience on statistical tools (Stata). CIS applications	y		
(Are Men) and urban simulations like METRONANICA (SETUTIA) (Stata), GIS applications	ļ		
(AIC Map) and ui bart simulations like METRONAIMICA/SLEUTH/CLUE-S.			
Lessential Reading Material - DOOKS			
1. Batty, Michael. Cities and complexity: understanding cities with central automata, agent	-		
based models, and fractals. 2007. The MIT press. (Chapter 1 to chapter 6)	ļ		
2. Irain, K.E., 2009. Discrete choice methods with simulation. Cambridge university press.			
(Chapter 3 – Logit)			
3. Field, A., 2013. Discovering statistics using IBM SPSS statistics. Sage. (Chapter 8 -			
Logistic regression)			
Essential Reading Material - Papers			
1. Wichael Wegener, New spatial planning models, international journal of Applied Earth			
Observation and Geoinformation, volume 3, issue 3, 2001, Pages 224-237, issiv 0303-	ļ		
2434, http://dx.doi.org/10.1016/S0303-2434(01)85030-3.			
Preterred Reading Material – Papers	_		
I. Aguayo, Mauricio, et al. "Revealing the driving forces of mid-cities urban growth patterns	S		
using spatial modelling: a case study of Los Angeles, Chile." Ecology and Society 12.1	ļ		
2. Barredo, J.I., Kasanko, M., McCormick, N. and Lavalle, C., 2003. Modelling dynamic spatia	3I		
processes: simulation of urban future scenarios through cellular automata. Landscape an	ld		
urban planning, 64(3), pp.145-160.			
3. Benguigui, L., Czamanski, D. and Marinov, M., 2001. The dynamics of urban morphology:	ļ		
the case of Petah Tikvah. Environment and planning B: Planning and design, 28(3), pp.44	7-		
460.	ļ		
4. Castle, C.J. and Crooks, A.T., 2006. Principles and concepts of agent-based modelling for	ļ		
developing geospatial simulations.			
5. Chengxiang Zhuge, Chunfu Shao, Jian Gao, Chunjiao Dong, Hui Zhang, Agent-based joint			
model of residential location choice and real estate price for land use and transport			
model, Computers, Environment and Urban Systems, Volume 57, May 2016, Pages 93-			
105.			
6. Meimei Wang, Yongchun Yang, Shuting Jin, Lei Gu, Heng Zhang, Social and cultural factor	rs -		
that influence residential location choice of urban senior citizens in China – The case of			
Chengdu city, Habitat International, Volume 53, April 2016, Pages 55-65.			

7. Mohamed R. Ibrahim, How do people select their residential locations in Egypt? The case of Alexandria, Cities, Volume 62, February 2017, Pages 96-106.

Course Reviewers:

- Dr. Talat Munshi, Technical University of Denmark, København
- Dr. Jay Mittal, Department of Political Science, Auburn University